Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 37(1): 82-97, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28173596

RESUMEN

Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.


Asunto(s)
Antibiosis , Avicennia/anatomía & histología , Avicennia/fisiología , Cadena Alimentaria , Herbivoria , Mariposas Nocturnas/fisiología , Animales , Antioxidantes/metabolismo , Avicennia/genética , Expresión Génica , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo
2.
Ying Yong Sheng Tai Xue Bao ; 25(6): 1825-32, 2014 Jun.
Artículo en Chino | MEDLINE | ID: mdl-25223044

RESUMEN

The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Ecosistema , Carbono , Clima
3.
Ying Yong Sheng Tai Xue Bao ; 23(4): 947-52, 2012 Apr.
Artículo en Chino | MEDLINE | ID: mdl-22803458

RESUMEN

Digging Phascolosoma esculenta to increase income is one of the main causes leading to the degradation of China mangroves. In order to understand the impact mechanisms of digging P. esculenta on the mangrove growth and to select indicators to evaluate the mangrove health, a simulative study was conducted to clarify the impacts of digging depth, radian, and frequency on the growth of 1-year old Avicennia marina seedlings, with the indices seedling height, basal diameter, single leaf area, specific leaf area, total biomass, and dead root dry mass measured. The results showed that digging activities decreased the increment of seedling height and basal diameter, single leaf area, specific leaf area, and total biomass significantly, and increased the dead root dry mass markedly. Digging depth and radian had obvious effects on the growth of A. marina seedlings, but digging frequency had minor effects. When the digging depth was < 5 cm, digging radian was < 240 degrees, and digging frequency was < 2 times per month, the damage to the seedlings was slighter; but when the digging depth was > 5 cm, the damage was quite serious.


Asunto(s)
Avicennia/crecimiento & desarrollo , Ecosistema , Actividades Humanas , Plantones/crecimiento & desarrollo , Animales , China , Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...